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IINTRODUCT LOY

The purpose of this work is to review several methods by which a
magnetic Tield B in space can be represented, with particular
attention to problems of the observed geomagnetic Tield.Time depen-
dence will be assumed to be negligihle and five main classes of repre-
sentation will be described, as Tollows:

(1) Representation by a vector potential A :

B = Vx4 (1)

This is 2 general Torm Lo which other forms noted here can

always be converted.

(2) . Representation by a scalar potential v

3 = -Vv (2)

This represecntation ls available. only in current-free regions and

it 1s particularly appropriate to the main geomagnetic Tield, where

the expansion of 7 in spherical harmonics is of considersable

interest.

(3) Representation by orthogonal vectors, in particular those

related to sphericel coordinates

B o= VXY, r + VxVxy, I (3)

This representation is related to spherical vector harmonics;
it has been used in dynamo theory and in a variety of problems.
As will) be seen, it is alsc useful in devising models of the

earth's magnetosphere field.



(&) Representation by Euler potentials

B = Y X ny (4)

Thig is the only repfeSentation which includes explicit infor-
mation about the configuration of magnetic fleld lines, but its
nonlinear character mekes its derivation difficult., In the
earth's magnetic field ™ is related tc MeIlwain's L parameter

which is useful In the study of the motion of trapped particles.

(3) Local representations, in which B 1is expanded around its
velue at some reference point

B = B,+ r+*»vVB, -+ %3_1;: VVB,*... (5)

Q

Such expansions Tind use in the theory of guiding centexr
moticn and in describing the vicinity of neutral pcints at

which 3 vanishes.

The present discussion is not intended to be self-contained: matters
on which recent reviews exist in the general literabure will only be
briefly described with references directing the reader to more elaboraie
treatments. References will also be given to articles in which varlous
mathemgtical tools described here are employed or menbioned, bul the
mentioning of such articles does not always imply concurrence with all
éonclusions expressed there, nor is the review of the literature meant
to be complets. In some cases review papers are cited mainly in order
that they may provide the reader with a guide to earlier work not

mentioned here.



(L) THE VECTOR POTENTIAL A

The representation (1) is the most general one snd others may be

reduced to it. For instance, {3) leads naturally %o

1}
il

q“12+\7;(;p2£ 6}

while (4) gives

If

A = otVp (7)

which is orthogonal to B . The representation (2) also has an equivalent
form (1} and if ¥ 4is expanded in spherical harmonics an eguivalent
representation of the Torm (3) is readily obtained {aa will De shown),
allowing (6) to be used. A11 these choices of A are indeterminate
within the gradient of an arbitrary scalar WV , Since the addition

0
of such a gradient to A does not affect (1) .

The representation (1) is part of the standard treatment found in
practically all texts on classical electrodynamics and will therefore
not be discussed in detail. Its main usefulness, in that Torm, is that if
the current density Q_ creating the field is everywhere known, A is

readily derived (assuming B to be & vacuum field) by volume integration

j(x*)
Alr) = (LLO/LF]T) J:'"::'—I':?T av’ (8)

|z

In engineering applications J 1s often given by the circuit
geometry and A is readily calcalated (often, B is directly derived in
such cases from the Biot~Savart formula). In space, on the cother hand,
j is generally a derived guantity cobtained only after B 1is given,

often with low accuracy, so that (8) is used relatively infrequently.

One importent case in space science where J 1is given occurs in

regions where it is inferred from the observed Tfluxes of charged particles
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[eog. Northrop, 1963, eq. 4.1 ; Longmire, 1965.] . One such region
occurs in the vicinity of the earth, where trapped pafticles suppert

a current density often called (not entirely accurately) the ring current,

The magnetic field in these regions iz generally known from independent

cbservations and its comparison to J forms an interesting check, often

engbling one teo deduce which part of an observed particle population
contributes most to the magnetic perturbation. Many analyses of the
ring current obiain B directly from Jj vis the Biot-Savart formula

[e,g. Akassofu and Chapman, 1961 ; Schield, 1969 ] . However, general

formalas for A , derived by (8) for configurations used in calculations

of the effects of a ring current, have been published by Kendall et al.

[ 6] .

Another case in which distributions of current density are used
as the source of magnetic fields in space occurs when such distributions
are introduced as the input data of theoretical models. The configuration
of the currsnt in such cases may be gelected on physical grounds - e.g.

field-aligned currents [iBonnevier et al., 1970 ; Crocker and Siscoe,

1974 ] or the geomagnetic fail sheet current [Williams and Mead, 1965 ] -

or else it (or part of it) may be represented by a generally expanded
function of position. The advantege of using J i1n the latter case is

that this assures the vanishing of V¥+B , which may have been the

reasoning of Olson [ 1974 ; Olson and Pfitzer, lgﬁ+] . Later on in

this review, however, it will be shown that similar properties may be
cbtained by simpler means. In most such applications, the Biot-Savart

formula is used and B 1is derived directly.
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(p) THE SCALAR POTENTIAL vy

() INTRODUCTION

In current-free regions ¢ x B vanishes and it is possible to

represent B by a scalar potential

B = - V7 (9)
Because Y+B = 0 , 7 is harmonic
2
7y = 0 (10)
and may be expanded in a variety of ways approprigte for harmonic functions,
The properties of harmonic functions and of » in particular are dis-
cussed in most texts of classical electrodynamics and for this reason

the discussicn here will be confined to applications relevant to the

geomagnetie field.

(o) SPHERICAL HARMONICS

The "main" geomagnetic field - i.e. that part of the field cbserved
at or above the earth's surface which is caused by currents in the
earth's interior - accounts for about 99 O/O of the Tfield observed
at ground level and is readily expanded in external spherical

harmonic functions

m=n

Yy = a Z—l ; (a/r)n+l PE(B) (gIIrll cos m¥P + hl:ll sin m“ ) (11)

where a is the earth's radius and Prrli are gzsocisted Legendre functions.
Attention should bhe given to the factor a outside the summation, inten~

ded to give the coefficients gﬁ and hﬂ the dimensions of maghetic
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field : as a conseguence such coefficients are generally given in units

of gausses or gemmas { one gamma = ) ¥y = 1672 gauss ). The Torm given in
(11), involving real coefficients, lg preferred in geomagnetic research

over the one usged in mathematical treatments, where the last factor in

each term of (11) is expressed in terms of 412 exp (im™P) , with the
sumnation over m extending from - n to n and the coefficients

(¥ 2 s 4’;m‘) being complex conjugates ( a related representation

uses spherical harmonic functiong 'ﬁi(e,‘?) proportional to Pi(e) exp im
Properties and details of this expansion are reviewed in many texts

and articles [e@ncm@mmzmdBm%dﬁ,lym; Heppner, 1963 ; Kaula ,
1968; Stacey, 1969; Zmuda, 12[5] .

In using the spherical harmonic expansion of 7y note should be taken
of the choice of normalizaticn, for several definiticns of Legendre

functions, differing by constant factors, are currently employed.

Three main cholices of this kind are described by Chapman and Bartels
[ 13&0] ; in the notation used by them {adopted from Adolf Schmidt)
Legendre Tunctions are denocted P for mathematical normalization,

n,m . . R ? mo . . <
P for gauseian normalization and Pn Tor Schmidt normalization. The

same notation will be uged here but it is by no means a general one
and frequently auvthors denote Iegendre functions by Pi regardless of

the normaltization which they are using.

In the above notation, if p = cos©

P o= (LR nr) dal @)
n,0

(Legendre polynomisls) {12)
Pn’m(uJ = {1- ug)m/e den,O/ au” (13)
Py = [(n -m)! /1.3, .. (en - 1)] Pn,m(p.)

i

[(n -m)! nl 2™/ (Qn)l] P m(“) (14)

2



0
Pn - Pn,O

(15)
A O e E Rk N R
Pg = [1-5-5- eer {on - 1)/ n.!] ps 0

(16)

5

1
{'1.5-5. ve. *ion - l)/l:% (n+m! (n- m)l] /%}Pi

(m # 0)

The coefficients of (L) gencrally have their indices arrayed in
the same manner as the Legendre functions to which they are attached. In
transTorming (11} from one normalizetion to another, whenever a Legendre
Tunction is multiplied by some factor, the corresponding harmonic coeffi-

clent has to be divided by the same Taclor, easuring that ¥ does not

VaTY .

In the literaturs coefficients of the expansion of ¥ are generally
listed for either Schmidt or gzussian normalization: for easy identifi-
cation the convention exists to reverse all coefficient signs for gaussian
normalization, so that the axial dipole coefficient gg is negative for
Schmidt-normalized potentials but positive for gaussian ones. In Schmidt
normalization the maghitude of terms is roughly of the order of their
contribution to the field: their gradual decrease with growing n reflects
the relative preponderance {near the earth's surface) of the contribution
of low-order harmonics, and for any n they do not vary systematically

with m .

In gaugsian normalization the magnitude of terms decreases more
gradually with n and for any n the terms having low m tend to be

larger. In computer applications the derivation of Pn n is, however,
A
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much simpler than that of PI; s because it can be handled by neans of a
recursion relation free from any irraticnal factors, connecting terms

with the same m [Cain_e_t_ al. , 1967 ] :

P (8) = sin"@
m,m
_ . m .
m»rl,m(e) = cos® sin @ (17)
_ n+mla - m)
Pni-l,m(g) = cosB Pn,m + (en + 1}(2n -~ 1) Pn-].,m

The derivatives required for the calculation of Be are best found
by a recursion relation based con the derivatives of the above relations,

starting with

m=-1

de,m/de = mcos® sin "~ 0O (18)

Normalizations other than those described also exist: a comparative

list of 8 choices from 18 choices has been compiled by Kaula

[ 1965 ; Table 2] .

(¢) GEOMAGNETIC MODELS

Expansions of the form (11) have been used for the geomagnetic field
since the time of Gauss [1859] . Typically, model expansions use

harmonics with n ranging up to n__ , with L between 6 and 10 .

Since the number of independent coefficients in such an expansion is

(nma.x+ 1)% -1 , one often finds authors speaking about models with

48, 63, 80, 99 or 120 coefficients.
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A very comprehensive review of early anslyses of the main field has

been compiled by McDonald and Gunst L 196IJ and some early results are

also given by Chapman and Bartels 1940 » More recent field models
g

have been listed by Heppner [1565J (zaussian normalization) and by
Vestine]Zl960] (Schmidt-normalized) . Cain {lg?l] reviewed some other

recent work and analyzed problems which arise in connectlon with
field mapping by satellite, An International Geomagnetic Reference Field
IGRF 1965.0 was derived and published by TAGA Commission 2, Working
Group 4 [1969] and contains 8¢ terms.

Most of these models take into account the slow "secular" variation
of the field by agsuming a linear dependence oT the coelfTiclents (gi, hﬁ)

of the form

& = a5 4 &t (19)

where g4 is the value of the coefficient at some initisl time ( e.g.

the beginning of 1965 for the IGRF model menticned before) and t is
in years. Some models - for example that of Cain et al. [1967] -~ also

include correction terms proportional to =

(a) CURRENT-FREE MODELS CF THE MAGNETOSFHERE

The expansion (11) consists solely of "internal harmonics' representing
a Tield which originates inside the earth and vanishes al infinity. IT
sources external to the earth were also inecluded their contribution to ¥
could be represented by a series of "external harmonics"” with positive

povwers of r

m=rl

y' = a Z Z (r/a)n Pl;:(e)[gg cos m¥P + Ei sin"""P] (%0)
n=1 m=0 '

Models of this form have been proposed for the magnetospheric field
by Mead [Zlgéh] and by Midgeley [1964] . In both cases the earth's
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field was approximated by the sxial dipcle given hy gg in (11) , Which
is orthogonal to the earth-sun line, and the Trame of coordinstes for
both the dipole component and the expasnsion (20) is fixed with respect

to the sun and the plane of the ecliptic,

In more complicabed models internal and external fields are usually
expressed in different frames of reference, since the internal Tield alone
co-rotates with the earth. I one neglects all internal harmonics except
for the three dipole coefficients g?, gi and hi s> Lhe model will
depend (when external conditions are Tixed) only on one parameter which
varies in time - the angle between the earth's dipole axis and the
eart-sun line, which varies by about 1550 around 90G , depending on
the season of the year and the rotation of the carth. For any given
valuec of this angle such a model is symmetrical about the plane contalning
the dipole axis and the earth-sun line and it 1s conveniently described
in solar geomagnetic coordinstes [Q&ggg, LQQQ {where the caption of Fig. 1
should be ignored); Russell,1971l; Burch and Japetzke,lgTh ] vith the

origin at the earth's center, the x-axis pointing sunward, the x-z plane
containing the dipole axis and the z-axis pointing into the northern

hemisphere.

Current-Tree models of this kind zre not meant to represent exter-
nsl Tields observed on the earth's surface - indeed, the surface effects
predicted by such models are far too small to account Tor the cbserved
dmlyvmiwjml[ygﬁ,iﬁﬁjo Instead, they are intended to approximate
the large-scale Tield of the outer magnetosphere. In a gualitative way
they seem to agree with observations - in particular, they display a
sharp boundary on the sunward side, limiting the regiom of field lines
connected to the earth and corresponding to the ohserved magnetopause.
The most significant non-dipole coefficients seem to be ES and Eé

and Turther improvemert has been obtained [Williams and Mead, 1965J

by adding a current sheet across the wmedian plane of the geomagnetic

tail.



Another simple current-free model approximating the external magneto-

sphere 1s the image dipole model; hers the effects of the external field

are approximated by a dipole parallel to the z-axis but locsted some

distance sunward from the earth [Ikxms, 1063; Taylor and Hones, 1965;

Forbes and Speiser, 19?1] » This representation, which was inspired by

the theory of the magnetic storm developed by Chapman and Ferraro [195;] 3

has two adjustable parameters - the distance to the "image dipole" and
its magnetic moment, which generally exceeds that of the earth by a

considerable factor. For instance, in the work of Taylor and Hones [ 1965 ]

the image dipole is 28 times stronger than the axial dipole of the
earth (other internal terms are ignored) and is placed 40 earth radii
sunvard of the earth, at a point which iz outside the "magnetopause
and thus beyond the region in which the model is valid; the model also
includes a sheet current in the geomagnetic tail region, somewhat

similar to the sheet current introduced by Williams and Meadw:lgéijn |

In a1l models with ilmage dipoles the scalar and vector potentials are
readily Tound by superimposing the contribution of the twoe dipoles, and
it is usually best to leave them in this form and not expand < in

spherical harmonics.

(e) CHANGE OF COORDINATES

In general the expansion (11) is given in spherical coordinates with
the origin at the earth's center and the z-axis aligned with the terres-
trial rotation axis. For some gpplicaltions it is useful to rotate the
z axis so that it coincides with the dipole axis, giving the so-called

"dipole coordinates” [ Chapman, 1965] . IT 7 1is expanded in dipole

coordinates both g% and hi vanish and the entire dipole contribution

is contained in the axial dipole term gg .

The use of dipcle coordinstes is especially advisable when it is
desired to enhance the pireponderance of the axial dipole ccmponent over
other harmonic terms. For instance, geomagnetic Euler potentials

(described later) may be obtained@ by a perturbation calculation in which
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- the zero-order term is the contribution of the dipole field; it is then
clearly advantageous to use dipole coordinates which make this term

relatively large and reduce the remaining "perturbation”.

Mathematical formulas exist fTor transTorming (11) from geographic to
dipole coordinates and they have the virtue that harmonics of & given
lovwer index n contfibute in the new coordinates only to harmonic terms
with the same n . Thus each group of 2n+1 coefficients corresponding
to a given n transforms independently and (say) a model with 99 coeffi-
cients (n £ 9 ) will be represented with full accuracy by the same
nurber of terms in the new coordinates (to be Precise, there will conly
be 97 independent terms in the new expansion, since gi and h' venish),

1
Formulas for such a transformation have been discussed by James [l969]

and are concisely given by Slater [1960] .

Where high-spced computers are available it is often simpler to
apply & "brute force" transformation as follows. Suppose & 99~term
expansion of » 1is given: one then begins by deriving its value
from the given expansion (in geographical coordinates) at 97 points
scattered over the surface of the earth. Next one transforms the
coordinates of each of the selected points to (spherical) dipole
coordinates in which the z axis is antiparallel teo the vector having
cartesian components ( hi, gi, gg ). In the new coordinates the expan-
gion of ¥ at esach of the given points is derived, with the new
expansion coefficients (gﬁ', hﬁ' ) entering as 97 unknown quantities
(two of them vanish and are not counted). This produces 97 equations in
Y7 unknowns, which are now solved to give the new coefficients. A repeti-
tlon based on ancther set of points is recommended as a check on accuracy
and as a precaution against ill-conditioned sets of equations, but the
resulting set of coefficients is usually accurate enough for normal use.
An example of this method is given by Stern [1211] who included in the
trancformation not only the time derivatives of (19) but also the slow

secular variation of the new coordinate axes,
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If the origin of the coordinates 1s also allowed to vary we obtain

eccentric dipole (or "offset dipole”) coordinstes. The cholce of an

arbitrary origin introduces 3 more adjustable parameters and can be
used, for instance, to assure the vanishing not only of gi and hi
but of gg s gé and, hg as well [;Bartels, 19%6; Chapman and Bartels,
lQhOJ ., The z axis of ececentric dipole coordinates should parallel

that of dipole coordinates to assure the vanishing of the two off-axis

terms with n=1 .

Unfortunately, = given expansion in geographic or dipole coordinates
(e.g. with 99 coefficients) 1s no longer accurately represented by the
same number of coefTicients (or in general, by any finite number) once
the origin is ghifted. In case of the 80-term IGRF 1965.0kmodel, Hilton
and Schulz [.lﬁléj have shown that a 195-term representation (n & 13)
of the Tield in offset dipole coordinates maintains sufficient asccuracy
Tor ?ractical purposes and have published its coefficients. It may
alsc be noted here that coordinates of the type discussed here seem to
be usetul. in describing Jupiter's main magnetic field, as cbserved

by the Pioneer 10 spacecraft I’Smith et al., lg]h] .
() PRACTICAT, PROBLEMS RELATED TO0 UNIQUENESS

The practical derivation of y Tor the maih geomagnetic field
involves mamy cbeservational problems, such as the elimination from the
data of effects of external sources and of magnetic anomalies in the
earth's crust, Assuming these to be solved, the problem can be viewed

as involving the derivation of
¥ 7= 7o + 71 (21)

where iz same Ppreviously known model of the potential and 7, is

7

0
a relatively small correction which is to be derived from the given daba.
If 71 is expanded as in (11) in spherical harmonics involving some

number N of unknown coefficients, then any observation related to the
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fleld can be reduced to a linear equation involving these coefiicients.
The relalion may be exact, e2.g. when any component of B is observed, or
it may be a linearized approximation , as happens when one observes the
field's magnitude |§| (see later on) or any of the direction angles

deTining B .

Thus the resulis of a world-wide magneltic survey tend to reduce to a
large set of linear squations in N unknowns. The coefficients of yl are
then derived by the least squares precedure as those coming closest to
Titting the sel and,in case approximate linearization was used in cbtai-
ning the equations, 7. iz generally added to 70 tc give an imprdvei
initial approximstion, after which the procedure is repeated cne or more
tLimes [Qgég et al., 1967 ] .

An interesting problem related to such procedures is that of the
uniqueness of the result: how can one be sure that a given data set

leads 4o & unigue choice of ¥ ?

One case 1n which this gquestion has led to unexpected results
inveolves the derivation of » from observations of |§ I {commonly
dencted in geomagnetism by F , a practice which will be follewed hers).
Such cbgervaticns are easily performed sboard spacecraft with an accuracy
of sboul one gamma [gggg, 1971 and refersnces cited there:l and they
have the advantage of not requiring precise knowledge of the attitude
of the sensor. IT one neglects the altitude variaticn of the orbit, the
unigueness problem reduces to the gquestion whether ¥ is uniquely

determined by observation‘of lv 7] = F over the surface of a sphere.
Lincarizing the expression of F obtained Trom (21) gives
1 o 2
VI VY, T3 [F’“ - (97 ] (22)
and this can be used iteratively (as described before) to derive the

coefficientes of o , with 71 added to 7o after each itersgtion step

to provide a better starting approximation for the step following, In
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computer simulations in which a known expansion (11) was used to gensrate
¥ this methed recovered the input coefficlents quite accurately within
4-5 steps. Conseguently it vwas generally accepted and widely used in the

treatment of actual data.

Meanvhile, however, Backus {'"1968, 1970, 197k| investigated the problem

mathematically. He first found that F and 7y were uniguely related when-

ever the series {11) was finite I_Backus, lgﬁé] ;» then he shovwed by actual
counterexamples that this was no longer universally true if the series

(11} was infinite [_Backus, 1970] and finally he proved that this ambi-

gulty was removed if F was observed over a finite volume in space

[Backus, ;21&] .

At the same time evidence began Lo accumulate suggesting that models
derived from T observed in near-~circular orbits fit the vector field
far less sccurately than they Tit the distribution of the field's magnitude.
In addition, different models derived from F exhibited relatively large
differences and this prompted Hurwitz and Knapp [lQT%]to conduct simulated

recoveries similar to those described before but with data contaminated
by finite "noise", as occurs in practical situations. In such cases ¥

is not recovered exactly but Tinite errors remain and Hurwitz ané Knapp
found thaht the Fit between the input vector Tield and that derived from
the output model was decidedly inferior to the fit between input F and

gutput F .

Stern and Bredekamp [195 ] independently obtained similar results and

also showed that such effects were connected to the counterexamples of

Backus ["1970] . These counterexamples bear a special relstion to the
dipole Tield and the Tact that the main geomagnetic Tield is dominsted by
its dipole component establishes a connection between them and ths
problem. In particular, it turns out that in the presence of Tinite
"moise" certain sequences of harmonic terms can exhibit enhanced fluctu-
ations which degrade the it to vector data much more than they degrade

the Tit to F. Such enhanced fluctuetions were in fact obtained in
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computer simulations and also in analysis of some of the runs of Hurwitez

and Knapp | 19741 and this strengthens the suspicion that some current
: g

models based on F  are in fact less accurate than has been claimed.

The uniqueness of ¥ derived Trom some other types of data has
been examined by Kono [.;QI‘ ] in order to evaluate the correctness of
some reconstructions of ancient geomagnetic fields. For instance, he
proved that magnetic declination observed at the earth's surface does not

in general define ¥ uniquely.
(3) TOROIDAL AND POLOIDAL VECTCRS

(a) INTRODUCTION

A general vector Tield V may be represented by three scalars
Y and ¥ , in the form .
1 2

O 3

¥y o= vy, + qu)l_l: + vaxsyaz (23)

The advantage of this form is (as can be verified by carrying out the
algebra) that if V satidfies the vector Helmholtz equation

VEY + ¥V = 0 (eh)

——

then each of the Wi satisfies the appropriste scalar Helmholtz equation

I
o]

2 2
VEy, + kY, (25)

(including the case K= 0 » vhen (25) becomes Laplace's equation). In a
similar way, if equation (24) is written in cartesian coordingtes, it is

resolved into three scalar equations of form (25), one for each cartesian
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component cf ¥V ; this is useful if the boundary conditions are easily
expressed in cartesian coordinates, whereasg (2%3) bears a similar relation
to spherical coordinates. Only a few systems ot coordinates allow such
direct conversion of the vector equation to the corresponding scalar one

[ Semior, 1960; Morze and Feshbsch, 153, chapt. 13 ] .

Because (24) arises naturally in wave propagation problems, the repre-

sentation (23) was First introduced in that context [ Mie, 1908 ; Hangen,

1935 ]. If a magnetic field B 1s represented 1n this manner, %% is
generally omitted, since It must then be a harmonic function snd its
contribution (as will be shown) may be represented by part of \Pg . The

representation using this form
B = vx VY r + 9xVxY I (26)

was first introduced in connection with geomagnetic dymamo theory by

Elsasser [lghj, 1946, 1947, 1956] who called the two components the

toroidal and poleoidal components of B , respectively.

These names are still used. To get some intuitive feeling for their

gignificanece, consider exisymmetrical fields,in which neither \?
1

nor *; depends on the azimuth sngle P . A toroidal field of this
type i1s then aligned with the ‘¥ direction and has Tield lines

circling the z axis, while the field lines of & poloidal axisymmetric field
are orthogomal to the ¥ direction and are confined to meridional planes.
a5 ancther axisymmetrical example, considey a poloidal Tield with field-
lines covering the surfaces of a family of nested toruses. When a toroidal
compenent is added to this field, fileld lines acquire an azimuthal slant

s0 that instead of staying in planes of constant Y they spiral around

the axis of their torus, in a way resembling that found in toroidal

plasma confinement devices.

Some of the elementary applications of (26) to dynamo theory have

been described Tty Elgasser [11956] . For instance, in a conducting
sphere both components of (26) will tend to decay with time: differential
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rotation - such as 1s observed on the sun and Jupiter, both of which have
magnetic Tields - will amplify the toroidal component, bui the strength
of thig process is proportional to the polcidal field which ultimstely
decays, unless it is continuocusly maintained by =ome Teedback mechsnisn
originating in the toroidal component., Parker [;@] showed that radial
Tlow in the rotating frame may induce cyclonic swirling which indeed
leads to such feedback. Various theories of solar magnetism based on

such considerstions have been advanced [Babcoc};, 1961 ; ILeighton, 1969]

but the details are beyond the scope of this review.

(b) VECTOR POTENTIAL, FOR A CURL-FREE FIELD

Two identities useful in handling (26) are

3]
It

v ox Y VY, X I (27)

1

i

Tx VAW r = VW) - zvy, (28

IT B is curl-free and satisTies (2) , with 7 expanded as in {11)
and (20), then it can be.represented as a poloidal ©ield with ¥ a
harmonic function simply related to ¥ [_E‘;_‘Eg_x_*r_}, _J_._g@&] . To see thit,
note that if ‘Pg 18 a series of spherical harmonics, the same holds
true Tor ¥fdr (v \Pg) . Furthermore, the last term of (28) vanishes
in that case, soc that only the gradient of a harmenic function remains.

This allows formal identification

y = = /dr (r\VE) (29)

and a term-by-term comparison of expansion coefficients. Specifically,

if 7 has expansion coefricients (gi, hi, gfn“, Efg ) as in (11) and (20)

m ]
and WY has corresponding ccefficients (Gn, I-frnl s E}:g, Hr; ) , then
=z



Gﬂ = gi/n Hi = hi/n
{30)
5:: *—“-EE/(nﬂ) _}f'r; = "-ﬁnnl/(ni-l}

To obtain the vector potential A for a given 7  expanded as in
(11) ana (20), equations (30} are used to derive the expansion termg of

¥ , after which one calculates
=2

A = VxV¥ = {31)

(¢) MODELS OF THE MAGNETOSPHERE

Curl-free meodels of the far-away gecmagnetic Tield, as were described
in the section on the scalar potential, are incapable of great quantitative
accuracy, because the region which they describe contains an appreciable

current density. As>an alternative, Mead and Fairfield [119753 Fairrield

and Mead, l975.J tried to represent the field in such regions by

expanding each component of B in povers of cariesian coordinates

E r & n-r-g
- X
Bi ainrs yoz (32)

n,r,s

Potential fields such as those of (20) are easily reduced to this

Torm but they comprise only a limited subclass of such fields.

Twe problems, erise, however: the Tirst is how to assure the vanishing
of V*B , and the second is the difficulty in controlling the model
near the boundary of the region for which it is derived, due tc the pre

of positive powers of X , ¥y and 7 .

To overcome the first difficulty Mead and Fairfield derived

the relations between the coefricients of (32) which are required in
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crder Tor §-B to vanish. They then analyzed magnetometer data Trom
space and derived a "best fitting set" of coefficients for (32) by a
lezast-squares procedure similar to the one used for deriving the main
field, described in section (2-F) , but based on vector data. In that
calculation the relations which assure the vanishing of ¢ eB were
inbroduced as constraints and were handled by the method of Lagrange's

multipliers.

A simpler method is however available: noting that

(33)

|23
3

-~
X + ¥V +

a2

E =

and expanding (26) in cartesian coordinates shows that if t{)l and
\-\12 are expanded in the form (52), then the resulting components Bi
also have this form. In particular, if the largest power n of
variables having the dimension of length is N for Y, and N-1

for \PE » then its value for the expansion of B; will be N,

Not all terms in the expansicns of W/ 5 produce indepeﬁden‘t

contributions tc B , because any part of q}i which depends on .

r alone does not affect B o The ferms with n = ¢ helong to this
clasa and should therefore be omitted. Consider next the three guad-
ratic terms proportional to xg, y° and z° . These can be combined
to give 3 independent terms proportional to x‘?, y‘2 and r® and
the last of these does not contribute to B, 2o that it can be omitted,
Similar arguments show thai for any integer k , one coefficient can
be eliminagted among those representing homogeneous polyhnomials of

degree . 2k in the expansion of k|Jl or W .
2
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One advantage of this approach is that no precautions are required
to ensure the vanishing of ¥ <B . It is also easily genperalized %o
overcome the second difficulty mentioned earlier, by devising models

in which qll and q»‘z are expanded in the Torm

\‘)j = % Srms 2y TS exv(~r/ry) (34)

n, m, s

where ro is some chosen scale distance (in principle, several geries
Wwith different choices of Ty could be used). Tt is more convenient

t0o use in this case sphericsl harmonics

l'P. = [ rrl exp(-r/ro) P;(e) [ujnms cos 8 4 v

Jms sin s\ J

{35)
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from which the components of B are readily derived. Ib should be noted
that the expasnsion of (34) is not equivalent to that of (35); in fact,

the latter expsnsion is equivalent to

N
= LE_ w T (X/r)u(y/r)v(Z/r)w exp(-r/ro)

U,¥,W

¥
d

which includes the terms of (34) if usvew =n bubt also contains
additional expressions., Some comparisons betbween this method and that

of Mead and Fairfield have been performed (D. Stern, unpublished) ;

while the improvement is rather smsll compared Lo the inherent dispersion
of the observational data, this approach should be useful in future

studies by providing more flexible analytical expansions.

Magnetospheric models somewhat similar to those described here have

been used by Qlson and Pfitzer [1974J « However, the derivation of

these models does not involve Q’i : it starts by fitting a cystem
of currents to observed fields [_géggg, }22&] and then approximates
the cartesian components of their fields by general expansions similar
to (32) and (34). The resulting models are not automatically divergence-

Trea.

Tt should be stressed that there exists no assurance that "global"
models, representing the entire magnetosphere by one series of analytic
functions of a given form, can do so with arbitrary accuracy. The power
series (32), for instance, ls an ordinary Taylor expansion and can represent
functions only in a cerbain neighborhood of the origin, vwhere it
converges: this region may not only be Tinite, it may be smaller than
the magnetosphere, in which case any representation of the field in
this way contains a finite error. The representatiocn (34) appears at
first sight to be more useful bul it,too, is sublect to the same restrictions

since it just represents the cartesian expansion of ﬂfi exp(r/ro) .
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At present, observaticnal inaccuracies are of the same order as those
introduced by global models and such models are therefore in gensral
use. Ultimately, however, it may be necessary to adopt a different
approach., Two extreme cases could then be considered - an extension
of the global method by which the magnetosphere is divided iptc a number
of large regions, each with ite own expansion, and numerical represen-
tation by means of a tabulated network of values (e.g. of qji )o It
should he realized, however, that the numerical representation can alsoc
be viewed as a local expansion, by means of the interpolation formulas
used, and by making the numerical grid more sparse and the interpolation

formula more powerful, the gap between these tvo extremes could in

principle be bridged.

(a) SPHERICAL VECTOR HARMONICS

The spherical harmonic Tunctions Pmn(Q) cos m¥  and PE( €) sin m

- or, alternatively

X = Bie) MY (36)

(in the notation of Morse and Feshbach [ 1953 , p. 1898-1900, which

this section will adopt) - form a complete set in which arbitrary

analytic functions of (8,¥ ) can be expanded. Similarly, spherical

vecior harmonics are 3 sets of vector functions of 6 and “f , denoted

as P » B and C » which find use in the expansicn of vector
—n,m ’ =n,mn -1, m
Tunctions,

Many problems in wave propagation lead to a vector Tield v
represented as in (25) and satisfying (BL@) Tor some values of kX .
This gives 3 independent cquations of the form (25) and separation
of the r varisble shows then that /. have the form

¥, = EAmian(r)f;(e,‘?) (37)

n,m
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where an(r) stands for Hankel functions if %X # O and powers of r
if k = 0 . When (37) is then substituted in (23) it is found that =21l
terms are expressed a5 the product of functions of r with some menber

of one of the following three families cf spherical. vecior harmonics

~n,n TZ XE(G ¥
B, = x [aeen] 2 vil(e,¥) (38)
o [_n(n+1)]"l/2 vx_r_xi{e,?)

Kote that any dimensicnal dependence on r 1in the above definitions
cancels out and also, by (ET), that for any pair of values of the indices
n and m the three above vectors dre orthogonsl. Other features of
these vectors (and of their real and imaginary parts, since by (36) they
represent complex quantities) are described by Morse and Feshbach [2&@23 .

Many of the representation discussed earlier can he easily expressed
in terms of spherical vector harmonics. For instance, the expansion (35)
is formally the same as that of (37) and therefore the results of its
substitution in (26) cén be expressed in terms of the vectors listed in

{38).
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(4} EULER POTENTIALS

(a) DEFINITION AND GENERAL PROPERTIRES

An intultive description of a magnetic Tield, Tirst introduced Dby
Michael Farsdasy, ig provided by maghetic field lines (or "lines of torce"
as he termed them) - lines which are everywhere tangential to B ., Such a
description 18 completely analogous to the represcntation of the velocity

Tield of an incompressible Fluid by means of streamlines.

For a long time field lines were mainly used as a device for visualizing
the magncetic Tield. However, with increasing interest in particle motion
and Lransport properties in a near-collisionless plasma - both in space and
in the laboratory - Tield lines assumed new importance, since both these
effects are channeled along them. This created interest in mathematical
degeriptions of the magnetic field which explicitely contain representation
by Tield lines; such a description has been evailable in Tluld dynamics

and it involves two scalar Tunctions o and ? such that

B = v« x vp (39)

The functions (d,@) are generally known as Euler potentials
because 1t was Leonhard Euler who first intrcduced such a representation
in the confext of fluid dynamics; they appear to have been introduced
into plasma physies by Grad [ Northrop and Teller, 1060; Gardner, 1959_] .
A short review of their history and properties was given by Stern [1970]

and the reader is referred to that work for details extending beyond the

Present brief description.
The basic properties of (c(,fB) are easily derived from {(39). We have

Ba Vol = O
(40)
B-Vp

I
O
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This means that surfaces of constant ot and B are everywhere
tangential to B - and this property extends to lines along which 1wo
of such surfaces intersect, which thus are field lines. Note that (39)

implies (hO), but not vice versa. Two Tunctions (u, v} with the property

of (k0)

B Vu = B Vv = 9]

do not satisTy (39) , in the genersl case, but rather

B = w(Vuxg9gv)

where w 1s an arbitrary function of (u, v). Functions such as (u, v)
may be called unmatched Euler potentials and have been intreduced by
Swect [ 16650] and Dungey {1958} . They are conserved along Tield

lines and are therefore functions of | d,¥3) .

In general (subject to restrictions of uniqueness and single valuedness
noted later) field lines of a given configuration form a two-parameter
family, in which the Tield line corresponding to the values (%, @Q)

of the parameters are represented by the intersecticn of the surfaces

(X(X:‘Y:Z) = MO

As an example, a simple model of the geomagnetic Tield is given by

(h1)

an axial dipole of moment g? ;  if (as in eq. 11) a represents the
earth's radius, one convenient cholce of (°<,§ ) , in spherical

coprdinates (r, @ , ¥ ) , is given by

T4

il

a gg (a/r) sin® @ (ho-a)

a™f (bp-v) -

ety
il
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Given any two numerical values (G(O"EO) of o and 13 ,» & Tield line
of this field is defined by (hl). Note that (42-b) indicates that Tield
lines lie in constant meridional planes, while (L2-a) gives the shape

of a field line within such & plane. Other examples will be presented later.

Euler potentials are not uniquely defined: for instance, <4 can be
incremented by any function of P without (39) being violated. More
generally, (O‘,P ) may be replaced by (o', 9‘) , provided the new
Euler potentials are Tunctions of the old ones and the Jacobian of the

transformation is unity:

It
)

lat, g1/ Ve, ) (43)
Given a magnetic Tield represented as in (40), it is generally possible
to choose for o' (at least inside a restricted region in space) any
well-behaved function o(‘(a(,jB) and then derive a corresponding
conjugate Euler potentiasl P' « An application of this property will be

presented at the end of this section.

A vector potential corresponding to {39) is

A = «vp (4k)

1l
o

and it has the property AR o
With all these useful properties, there exist two important drawhacks

to Buler potentials which limit their application. The first is non=linearity:

the representation (39) 1s non-linear, since it involves products of the

derivatives of of and Jl « This means that superposition does not hold

for Buler potentials: given the Euler potentials for two Tields El and

B, , the functicns (C(,@) for the corbined field does not equal the

sum of the Euler potentials expressing El and §2 separately and, indeed,

might be difficult to derive, even when the Euler potentials of the com-

ponent fields are known. In practice this greatly limits the class of

Tlelds for which snalytic forms or even analytic approximations of (0(,Pﬁ

are readily derived.
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The other drawback, more important in the laborstory than in space
applications, is the possitility that the labeling of Tield lines by
(o{,P) is not single valued. In toroidal confinement devices, for
instance (tokemaks, stellarators), if a field line is lsbeled by (ef,{}
in some limited region of the field and is then followed outside this
region, it may ultimately enter the region once more, In Ffact, such s
Tield line usually returns to the same region again and again and with
each return it colincides with some previously labeled Field line - in
general, one with different values of (of, pJu In such cases the labeling
1s gingle valued only if a.limited region is considered and is not possible
when the entire field is represented. For Turther details sbout thess and

other properties of Euler potentials the reader is referred to the review

by Stern [;QIQ] .

As an illustration of an application consider the motion of trapped
rarticles in the magnetosphere under the combined influence of a static
electric field

o= -v¢

and the geomagnetic field B - Because of the high conductivity along
Tield lines the electric field (except in some gpecial regioms, perhaps)

comeg close to being orthogonal to B , i.e.
5-V¢ = 0 (45)

By (40} +this condition is neatly expressed by the requirement that ¢
depends only con (G(,Sb) =

¢ = ¢(L,P) (46)

A charged particle of very low energy, conserving the two lowest
adiabatic Invariants but with negligible magnetic drift, will move in
this field with the drift velocity

vg = (BxVe)/E? (47)
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From thisg KA VCP = 0 and therefore the particle stays on a single

equipotential surface throughout its motion.

Now as stated earlier, any "well-behaved” function o' of (¢, ?ﬁ)
can be chosen Lo replace of and an appropriate "conjugate potential” ‘% !
can then be found for it. In particular, let the role of of' be played
by ¢ (d,§5) and let the conjugate potential be denoted Y (ol %} ,

..

B = V¢ x VY (48)

It iz imstructive to derive the rate at which \}’ changes at the

location of the drifting particle. By (47) and (48)

|
-

ay¥ /at KACA ¢ (49-a)

1.e.

Vo= v - g (49-b)

Thus & swarm of particles starting from s surface or constant "P‘ at
t = 0 will always share the game valus of *P + The averaged motion of
such particles -~ that is, the gradusl change of their guiding field lineg -
is conveniently studied in the (N,P ) plane, where to every pair of
valuss of the Buler potentials - and hence, to every possible guiding
field line - there corresponds cne point (in the geomagnetic Tield the

equatorial plane can play such = role).In this plane the lines
4’ (et ,?’) = constant

can be viewed as rays along which very low energy particles propagate,
while lines or constant ¥ act as "wavefronts" marking the particles’

progress, Figure (1), taken from Stern ]';974 ] gives lines of constant

¢ (s0lid) and \P (broken)} for some particular geomagnetic model, in
which the earth's Tield is approximated by a dipole field and some analy-

tical model of ¢ is assumed.
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The preceding is readily extended to particles of Tinite energy
congerving the magnetic moment M and the second invariesnt J ,
exceTt that now ¢ is replaced by the aversged guiding center

hamiltonian K(o, P, M, J) introduced by Northrop and Teller 1960

This generalization has been developed for the dipole field by Chen

and Stern [1975] , Who provided an analytical approximation Tor K

end expressed its conjugate potential by means of numerical integration.

S

(o) EXAMPLES

In general, simple analytical forms Tor the Euler potentials can only
be Tound for classes of fields with some type of symmetry. For instance,

H

two-dimensional fields of the form

B o= B0, y) & + B, (x, ¥) ¥ (50)

have Buler poteniials

d .

p

where the functions f©(x) =and gly) are obtained by deriving o in

foay + r{x) =-fodx+g(y)
{51)

]
[

two different ways (because V8 = 0, tvo such equivalent derivaticns
are vossible). The hamilitonian for a particle with mass m and charge q

moving in such a field can then be written

Po= e [ 4 (p, -0kl 2] ()

Z

Since 2, is a constant of the motion it follows that the motion
reduces to that of a two-dimensional free particle in a non-negative
potential

v = {(p - g B/ enm (53)

z
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For all such motions, lines of constant ol in the (%, y) plane -
which trace the pattarn of field lines -~ ars equipotentials of V .
The value of V attached to any such line and the general configuration
of regicns of high and low potential depends ¢n the constant P, &ppro-
priate for the given moticn. One interesting configuration of this class

occurs in the neighborhood of an X-type neutral line [Russ’bridge, 19’{]_] 3

other exemples and generalizations have been examined by Stern ilg:zz] .

Axisymmetrical poloidal fields, by (26), can be represented by Euler
potentials with P =¥ , since

vx v z¥,ir,0) V< ioy/00)

-y [r 56 (D9 /28)] x vy (54)

The dipole example of eqs. (b2) belongs to this class. Tt is also

possible to derive simple Buler potentials for pure torcidal fields:
vVxW¥,r = VY Xx Vr (55)

However (as noted earlier) when fields of both kinds are combined

ne simple way of deriving Euler poﬁentials exists,

A case of practical interest involves the main geomagnetic Tield,
usually represented by a scalar potential ¥ as in eq. (11). No
analytical method is known by which (&, 5!!} mey be simply derived
for such a field, but a perturbation techniqgue is available Tor

cbtaining them approximately.

The method is based on the observed property that the dipole
compaonent go in (11) dominates the expansion, especially if ¥
is expressedlin dipole couordinates. In such coordinates let (0(0, S’]’O)
be the dipole Euler potentials of egs. (42) (the subscripts zero refer

here to zero-order approximations and are unrelated to those appearing
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in egquaticns 41 ), while ig the corresponding scalar potentiasl. Iet

¥

0

(o, ?2 , ¥ ) Dbe the first-order corrections, linear in the higher
i 17

harmonic coefficients (gi, hg) , applied to these three quantities,

Substitution in (39) then gives

-V = VeAax VB o+ Ve x VP (56)
from which
Vﬁﬁ(l'V?’O = V&O.V?’
{(57)
VPI-THG = 9o V7,

Expressing (o(l, @l, 71) in terms of (0(0, ?O’ @) =aliows these
equations o be integrated and provides (o(l, Pl) within arbitrary
functions of (O(O, ;3 O)' Hewever, (57) contains only two of the three
scalar relations implied by the vector equation (56); if the remaining
scalar relation is now jnvoked, the arbitrary added function may be
determined. Details have been derived by Stern [;26_7] and related
expressions were first obtained in a different context by Pennington

[}ﬂ, i&@l] » The calculation has not been extended to higher
order, except Tor one effort by Hassit [196?] in which second-order

unmatched Euler potentials were derived.

The same perturbation method can also be applied to the external
harmonics of section {2-4) and in particular to the simple model
described there, with the expansion of y involving only the three
coefrTicients g(z, ‘g(j and 'é;"i . As might be expected, the resulting
expansion breaks down at large distances, but it also becomes unrealis-
tic near the & axis. It provides a Tairly good representation of the
field in the regions occuplied by trapped particles:; in the noon-
midnight cross section of the (d,ﬁ) mode]ﬁn the region in which the
model field departs markedly from the curl-free field from which it
was derived, there exists the added feature (not found in the curl-free
model) of a meutral point on the night side of the dipole, in addition
to two such points on the day side, corresponding to the polar cusps.
Further details have been given by Stern [ég_@]] and Kosik [19715:, '_b_] .
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A model with some similar properties (but much smaller deformation) has
been developed by Parker [1960] .

While accurate representations of the magnetospheric Field by means of
(U{,%) arc 4ifficult to obtain and no iterative procedures Tor deriving
them heve been published, it is relatively sasy to devise simple models
which exhibit appropriate gualitative properties. For instance, a distor-
ted dipole field, compressed on one side and stretched cut on the other,

ig given by

I

c‘/aggi sin®g / r -~ k sin®6 (1 - cozy)®

P

where k 1s an adjustable constant. It is easy to distort this model

(58)

&' ¥

further, in such a way that all its field lines are conbained within

+the surface

fr,9,9) = 1 (59)

Thiz ig accomplished if ol is multiplied by ( 1 - £ J ; in order that
the Tield will. continue to approximate the dipode near the origin, § should
tend to zero a8 T - O o For instance, if the field is to be contained

inside the parsboloid

r o= rO/(l + sinBcosvp) {(60-a)
one can multiply oK of {58) by the factor
1 o- (r/ro)m(]. + 2in® cos¥ )" (60-b)

Tncreasing the adjustable parameter m narrows down the transition
zone between the main Tield and the boundary field,., Further improvement can
te obtained by shifting the focus of the paraboloid awsy Ifrom the origin,
but it should be noted that in all these models the boundary is always

connected to the two dipole field lines which emerge along the =z axis.

As & Tinal note, axisymmetric models of this sort have been consiruc-
ted by Barish et al. [19{4] for the magnetic field of Jupiter, fcollowlng
its observation by Pioneer 10 [ Smith et al., lgzl;:[ .
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(¢) THE 1L PARAMRTER

Befecre the (c{,@ ) system Tor the magnetosphere was developed an
alternstive approach to the labeling of magnetic Tield lines was

introduced in the Torm of the so-called L parameter due o McIlwain

[1961, 2066] .

As an intuitively meaningful guantity the L parameter is extremely
useful: it has dimensions of length in units of earth radil and in a
dipole field its value at any given point e»\quals the maximun distance
from the dipole sttained by the field line passing the given point. In
a perturbed dipole Field (and the parameter ie only defined For dipole
fields and perturbed dipole fields) the value L{E) at same glven
position r still approximately equals the largest distance from the
origin which is attained by the Tield line through r . However, the
generalization of L +to perturbed dipole fields is not periformed in a
way which aims at preserving the equatorial crossing distance. Instead,
the definition tries to preserve a different property, useful in studies
of trapped radiation - that if a charged particle is trapped along any
field line with a given value of L, as it gradually drifts arcund the
dipole then 2311 $ie=ld lines which it passes will have the same value of

L .

This property 1s only approximately achieved. Indeed, it cannct in
general hold for all particle orbits in an asymmetric field, since two
varticles starting on a given Tield line in such a field with different
mirroring points will in general follow slightly different surfaces ("drift shells"™
during their drift (this is known as shell splitting). However, Tor the
gecmaghnetic fie=ld the separation between such surfaces tends Lo be small
and consequently the values of L encountered by a particle in its drift

generally vary by less than 2 7; .

In this section the relation between L and (of,f) will be traced,
the inherent limitations of L will be clarified and suggestions will be

described for ways in which the concept can be generslized.
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In & static near-dipole magnetic field, trapped particles tend to
preserve the two lovest adisbatic invariants (the third invariant is not

needed here)
po= ] fend g = ¢$p, al (61)

where m 1is the resi masg, (p# s By ) are the components of the
momerntun parallel and perpendicular to B and integration is along

a field line. 3Since the magnitude p of the momentum is also conserved

(in the absence of electric Fields, which Will now be assumed) it is possible
in this case to replace (u, J} by itwo related quentities (Bm, I) which

are also constants of the motion but do not depend on the particle's

energy:
B, = O /em
(62}
B
1 = Jgfep = [ (1-?5/]35111)1/2 ag
B'
n

vhere the integration of I exfends hetween mivror points at which
B = Bm o As the particle drifts from one guiding field line to the next,
it always chooses that opne of the adJacent field lines on which the

value of I , evaluated between fixed values of Bm 5 18 the same.

As the particle drifts its guiding field lines gradvually trace a
surface - a closed surface for trapped paftieles - called a drift shell
or a drift surface. Because drift shells are tangential to B their
equations have the form

e, P) = conshbant (63)
&z
For each pair of parameters (I, Bm\ there exlsts a drift shell and

therefore the entire collection of drift shells can be represented by

scme Tunction F as
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P, % ,I ’Bm) = constant (64 )

{(the constant may be chosen as 0 or 1 without loss of generality).

Isolating o gives

« = GlI, By, @) (65)

In a dipole field P may be elimineted because of axial symmetry; in
that case, if (iﬁtp ?D) are the Euler potentiale defined in (42), then
(65) reduces to

«, = ¢L B) (66)

Now (I, Bm) can be replaced as paramebers characterizing drift shells
by any two well-behaved Tupctions depending on them [Eﬁg{g, }2@@] . In
particular, in the case of the perturbed dipole field, GO(I, Bm) or any
Tunction L(GO) can be used as one such parameter, while Bm may be retained
as the second one. This characterization will have the advantage that in
the dipole limit - due to (66) - the shell equation depends only on a single
parameter GO or L(GO),; not on two. In that 1limit 2l the trajeciories
starting from the same initial field line trace the same surface and have
identical values of Gb or L(GO); by way of contrast, if such shells
were classified by using (I, Bm) ;» & Tinite range in both these parameters
would be required. .

In a perburbed dipcle field the shell eguation is given by (66)
and no gingle-parameter description is possible. However, if the pertur-
bation is small, equation (65) will differ from (66) only by smsll
cérrecticn terms. Denoting such terms by subscript "1" and using (GO, Bm)

a5 parameters brings (65) to the Torm

P

[

Gy *+ Gl(GO, Bm,P’ ) (&1)
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Thus the shell's equation depends strongly on & and only weakly,

0

through the correction term G , on the second parameter Bm « IT Gl
1

is ignored ~ or better, replaced by (Gl> s ite average over B, -

then all particles characterized by some value of G, will stay close

0
to the surfTace

& = g, + <Gl(GO,P)> (68)

and thus their drift shell will still he approximately characterized by
the single parameter GO » A1 the greceding also holds iT GO is
replaced by L(GO); in particular, McIlwain's definition of L [McIlwa,:‘Ln,

l%l] is equivalent to

(1, Bm) = a gf / GO(I, Bm} (69)

In McIlwain's work the sbove function is approximated in two steps,

beginning with the definition of auxiliary functions

Y = 1n (L?‘Bﬂfgf - 1)
(70)
X = 111§ Where E: ISBm/gS

The relation hetween X and Y d4s then approximated by a polynomisl

Y = Z: & x> (11}

In the original derivation [McIlwain, 1963_] sixth=order polynomials

were uged and different expansions were chosen for each of 5 ranges

of X . Later on [McIlWain, 1966] an improved approximation was derived,
with N increased to ¢ and the number of ranges to 6 , and an inverse
expangion, expressing X 1in terms of Y , was also provided. A much
simpler and fairly accurate approximation has been proposed by Hilton
[1972] , who matchea the enalytical behavior of L &t the limits

I=0 ard Bm-)- ©0 with that of the approzximation. Hig result 1is



_59_

LSBm/g'S = 1 4 al§1/5 + a2§2/3 + a,gi (12)
where
a, = 3 (2)1/2/7t ~ 1,3507
oy = [2 + 5 Pme v 53] 7
&~ 0.04T75455
8, = 0.456376

The relative inaccuracy QIJE of this approximetion is 10°% or less.

The L parameter 1s widely used in lsbeling 7ield lines, in the
Tfollowing manner, Given a point P = (x, y, z) in the earth's field
(which is assumed to be given by the expansion (11) of the scalar
potential) , the integral I is derived for partlcles mirroring at P,
by numerical infegration. Using one of the formulas described earlier,
L{z, Bm) s derived for these particles and its value is regarded as
& labeling parameter for the field line passing P ., Of course, what has
been derived here is an approximation to & gg/c((x, Vs z) vwhere X is
the perturbed-dipole generalization of &g in (42-a) {in principle a g?/o(
could be chosen as a new Euler potential o' , but the form oF ?’ is
then complicated). The deriwvation of this approximation is encumbered by
the need for a numerical integration expressing I , although this
integration has been gsimplified -~ as far as computer use ig
concerned - by G. Kluge (ESRO InternalflNote 66, October 1970) who first

transformed it by inversion with respect to the origin.

This correspondence between L and o works both ways and Stern
[}Qég:] has used approximations of o for perturbed dipole fields to
obtain approximations to {1, Bm), avolding the need for deriving X
by line integration. This method is already impliciit in the werk of
Pernington [_1961, Eﬁsz] who derived the equations of drift shells in
a perturbed dipole field by a straightforward perturbation method.
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poloidsal
The L parameter can be generalizsed to any near-axisymmetric pmagnetic
field : if (65) represente the Tamily of drift sghells in such a field, it
is only necessary to derive the corresponding equation (66} Tor the
underlying axisymmetric Tield and then choose G, or some function

0
of G as the L parameter.

O
Such an approach was applied by Stern [1%8] to the 3-parameter model
of the magnetosphere discussed in the preceding section. At moderste dis-
tances Trom the origin this Tield may be viewed as a perturbation of the

exisymmetrical Tield given by

B = - Vv
(73)

y = a [g(j(a/r) + Eg(r/a)a} cos®

By a perturbation method Stern derived an approximate Torm for the

equation corresponding to (66) in this field
X = Gz, B )

and dencted L' = g gcl)/G' a8 Tthe generalized IL-parameter. In principle
the same generalization should be feasible for taking into account the
axisymmetrical ring current of the earth, for treatment of particle motion

in slightly asymmetrical mirror machines and for similar applications.

A number of guantities related to I are in general use. Amcng the
begt known of these is the invariant latitude A @ given a point with

some value of I , its “invariant latitude" satisfies
cos®\ = 1/1 (%)

The underlying idea is that if all points in the perturbed field wers
to be mapped to a dipole field in a way that L (or of ) were comserved,
then \ would be the latitude at which the Tield line through the peint
met the earth's surface. A similar generalization for the longitude is

provided by the magnetic longitude {McIlwain, 15266] .
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(5) LOCAL REPRESENTATIONS

A\

It is sometimes required to represent B 1in the immediste neighbor-
hood of some given point P without regard to the Tield's configuration
in the rest of space. Two important cases in which this happens are In
the guiding center motion of charged particles and in plasma dynamics
near neutral points: it is useful In sﬁch cases to introduce so-called
local representations of B which are valid only in a restricted

neighborheod of P .

The most common local representation - and the only one discussed

here - is the Taylor expansion

1
= . - : + ...
B(r) By + X*VBy, + Zrr:vv3B (75)
where all quantities with subscript zero ars evalugted at the point P,
regarded as the origin for r . Such a representation is Tully eguivalent
to (32) and is best handled by the methods developed in section (3-c¢),

l.e. by expressing B 1in the form

B = VK_E'PI + VXVXE'PE (76)

and expanding Wz and Y  din polynomials in (x, ¥y, z). Let ‘Vij)
z
denote the sum of those terms in the expansion of #’i wWhich form

homogenecus polynomials of degree J in (x, ¥, z). Then it is easily

seen that h
EO = VKV"‘_I'_\Pél)
_ ‘ (2) (1)
r°VB, VrVAZY ™ 4+ yxzy, (77)
“23:1‘1'=W§0= ¥ ox VX E‘PS) + vxiﬁl’ig)

and so Torth, with the degree of the terms on both sides increasing



- 4o -

by unity with each succeeding }ine, The coefficients on either side are nct
in general independent. On the left side the terms are related by virtue

of the condition W .8 = 0 ; for Instance, VJE; is required to have

zero trace, so that only 8 of its coelfficlents can be independently
specified. On the right any combination of terms which depends on r alone
doess not contribute to the Tield and should be eliminsted by the methods

of section {3-c). The vector potential follows at once from (77) ; it should
be noted that no simple relation exists between the expansion (79) of 3

and a similar one for A .

In principle [Morse and Feshbach, l95§] an alternative local

expansion ig possible in which r in (76) is replaced by the constant

~,
unit vector Z

~

B = VYr¢ Z t vyxvxg 2 (78)

1 z

This, however, introduces a considerable ambiguity. In {76) no compo-
nent of B can be both poloidal and toroidal, so that the assignment of
such compeonents to ¥ and VY is never arbitrary. The analogous
statement does not holdlfor (?8) ind because of this, except perhaps Tor

special cases, this expansion is not recommended.

Local Buler potentials are similarly expressed as polynomiazls of ascen-

ding orders
o - o (1) + D{(e}
(79)
(1) (2)
- B + B
o (1) (2)
1 (1
2o Vel " VP (80)
e, = v M ox VPR gl® velt

and so forth. The calculation here is greatly simplified if the ccordinate
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axes are sultably chosen, with the 2z axis along EO and

d(l) - x (3(1) - By

If then

04(2)

(2)

I

a11%" + 822" + a552" + (al,- 2b)xy + oA xz 4 oa,.yz

If

P 2
LEPEE 4 b22y2 + Dby + (bie" Eall)xy + b.gXz + b,.y2

it iz found that the 4 coefficients a a D 1 and bgg affect

11? =22’ 71

onty orders higher than the Tirst in (77), vhile the remaining 8
coefTicients are uniquely related to the 8 independent terms which

determine v _]§0 .

An interesting local representation, equivalent to (75) up to the

order of I?EO , has been described by Siambis and Northrop []966] .

At a point P in the Tield let the unit veectors (TL_, _]321, _1/\_;) form a
right-handed orthogonal system with the origin at P, i parallel

to B and i& pointing towards the center of curvature of the Tield line
through P . In this system the components of V_EO can be expressed

in terms of curvature and shear coefficients (loc. cit., appendix)

while the coefTiclents themselves can he expressed in terms of the spatial
variation of the basic unit vectors following a shift in P . Some

applicatiocns of such a system of local vectors exist in plasma theory,

ee.g. in the work of Wilson [19'?0] .

The Taylor expansion (75) forms a focal point of the theory of neutral

points [Dungey, 1953, 1965] « A first-order neutral point exists at P

of -@0 veanishes but V ]_3_0 does not, so that to lowest order, in the

vicinity of P
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B = I-VE, (82)

Bven though B wvenighes at P there may exist singular field lines
which pass through P and st sulfficlently small distances from P such
Tield lines can then be approximated by straight lines. In the region of
interest the magnetic Tield B depends linearly on (x, y, z) as
measured from P and ﬁherefore, 1T £ is the radial distance measured

from P along one of the singular lines, its value on that line should

satisfy (to lowest order)
B = X% (83)

where A is some constant. By {(82)

(84)

vy
1Y
H

§-vs

-

Q

and therefore A must be a real eigenvalue of VB, . There may exist

0
either 1 or 3 such eigenvalues ; accordingly, there will exist 1

or 3 such singular Tield lipnes and P will be classified as an O-type
or X-type neutral point, so named because Tield line configurationg

near P resemble either the letter 0 or the letter X (Figure 2) .

4 great amount of theorelical work and of interest has Tocused on
X-type neutral points, since they play a central role in processes
which change the topology of magnetic field lines; for a review the
reader is referred to the work of Vasyliunas [:;212] . Surprisingly,
only limited experimental work exists on the subject [e.g. Baum et al.,
3§Z£§J s hor has there heen much interest in magnetic field configurations

in space with O-type neutral points.
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AFTERWCRD

This iz a draft of a review article and additional relevant material
may be added to the final version. The author welcomes any suggestions

for such additions as well as commenits of a general nature.

Two additions which will be incorporated concern the description
of two extraterrestrial magnetic fields by harmonic expansilions similar
to eq. (11). Altschuler and Newkirk lrégég] applied such an expansion
to the megnetic field of the szun and their work was extended by Schatten
[ 1971 ; Schatten and Howell, 1971] . In addition, Acuns and Ness
[ggﬂj_] extracted a model of the external Tield of Jupiter from the

observations of Pioneer 11, which passed close enough to the planet to

allow the larger non-dipole harmonic terms to be estimated.

Another such addition concerns the work of Veigt [:1972] , who

developed a general class of current-free maghetospheric medels. In
Voigt's approach the bounding surface (i.e. magnetopause) is deduced
from observations and serves as a boundary condition to which an

expansion of ¥y 1is then fitted.



CAFTIONS TO TFIGURES

Figure 1 - Lines of constant electrical potential ¢ (&, {») (solid)
and of constant conjJugate potential Y (o, P) (daghed) for
a dipeole magnetic field in the equatorial plane, using a

simple analytical model of the earth's electric field.

Figures 2 = The behavior of magnétic field lines near an X-type (2-a)
and an O-type (2-b) neutral point. In Figure (2-b) the
pattern below the neutral point mirrors the one shove it

and the main axes need not be orthogonal.
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